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Waterlike thermodynamic anomalies in a repulsive-shoulder potential system
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We report a computer-simulation study of the equilibrium phase diagram of a three-dimensional system of
particles with a repulsive-shoulder potential. The phase diagram was obtained using free-energy calculations.
At low temperatures, we observe a number of distinct crystal phases. We show that at certain values of the
potential parameters the system exhibits the waterlike thermodynamic anomalies: a density anomaly and a
diffusion anomaly. The anomalies disappear with increasing the repulsive step width: more precisely, their
locations move to the region where the crystalline phase is stable.
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Some liquids (for example, water, silica, silicon, carbon,
and phosphorus) show anomalous behavior in the vicinity of
their freezing lines [1-16]. The water phase diagrams have
regions where a thermal expansion coefficient is negative
(density anomaly), a self-diffusivity increases upon pressur-
ing (diffusion anomaly), and the structural order of the sys-
tem decreases upon compression (structural anomaly) [6,7].
The regions where these anomalies take place form nested
domains in the density-temperature [6] (or pressure-
temperature [7]) planes: the density anomaly region is inside
the diffusion anomaly domain, and both of these anomalous
regions are inside the broader structurally anomalous region.
In the case of water these anomalies are usually related to the
anisotropy of the intermolecular potential. However, isotro-
pic potentials are also able to produce density and diffusion
anomalies. It is interesting that such potentials may be purely
repulsive and can be considered as the simplest models for
the waterlike anomalies. It has been shown that waterlike
structural, thermodynamic, and dynamic anomalies can be
generated in systems where particles interact via isotropic
potentials with two characteristic length scales, with shorter
range corresponding to a hard-core-like steep repulsion and
longer range representing softer repulsion—potentials in
which two preferable interparticle distances compete depend-
ing on the thermodynamic conditions of the system [17-35].
In these studies it was found that pure repulsive-step poten-
tial showed no anomalies (see also [36]). However, recently
it was shown that waterlike anomalies can exist in the sys-
tems of particles interacting through a purely repulsive step
potential [37]. This finding is supported by a recent study by
De Oliveira et al. [38] of the evolution of the waterlike
anomalies in a system with a potential that is tunable from a
“ramp” potential to a repulsive-step: the characteristic “wa-
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ter” anomalies were found in the ramp limit and all but one
where found in the repulsive-step limit [36]. In this paper, De
Oliveira et al. showed that potentials in which two preferred
distances are present, always exhibit waterlike anomalies, be
it that sometimes they may be in an inaccessible region,
where the crystalline phase is more stable than the liquid.
This is the case for the repulsive-step potential studied in
Ref. [36].

The repulsive-shoulder potential was introduced in the
early work of Hemmer and Stell [17,18] in order to describe
isostructural phase transitions in materials such as Ce or Cs.
It is the simplest example of a repulsive intermolecular po-
tential that has a region of negative curvature in the repulsive
part, a feature that is known to be present in the interatomic
potentials of some pure metallic systems, metallic mixtures,
electrolytes, and colloidal systems. Systems of particles in-
teracting through such pair potentials can possess a rich va-
riety of phase transitions and thermodynamic anomalies, in-
cluding liquid-liquid phase transitions [39-41], and
isostructural transitions in the solid region [42-44].

In the present paper, we show that waterlike anomalies do
indeed exist for repulsive-shoulder potentials and we show
how these anomalies move to the region where the liquid is
metastable as the width of the repulsive step is increased.
The width of the repulsive-shoulder potential studied in Refs.
[36,38] corresponds to this limiting case.

The repulsive-shoulder potential has the form

o, r=d
d(r)=e, d<r=o (1)
0, r>o

where d is the diameter of the hard core, o is the width of the
repulsive step, and ¢ its height. In the low-temperature limit
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FIG. 1. A repulsive-shoulder potential consisting of a hard core
plus a finite shoulder (dashed line) (e=1, o=1.15,1.35,1.55,1.8)
along with the continuous version of potential (2) used in the simu-
lations (e=1, o,=1.15,1.35,1.55,1.8).

T= kgT/e<<1 the system reduces to a hard-sphere system

with hard-sphere diameter o, while in the limit T>1 the
system reduces to a hard-sphere model with a hard-sphere
diameter d. For this reason, melting at high and low tempera-
tures follows simply from the hard-sphere melting curve P
=cT/a'3, where ¢=12 and ¢’ is the relevant hard-sphere
diameter (o and d, respectively). A changeover from the

low-T to high-T melting behavior should occur for T=O(1).
The precise form of the phase diagram depends on the ratio
s=o/d. For large enough values of s one should expect to
observe in the resulting melting curve a maximum that
should disappear as s— 1 [44]. The phase behavior in the
crossover region may be very complex, as shown in [37].

In the present simulations we have used a smoothed ver-
sion of the repulsive-shoulder potential [Eq. (1)], which has
the form

O(r) = <£j)" + %8{] — tanh[ky(r — o)1}, (2)

where n=14, ky=10. We have considered the following val-
ues of o,:0,=1.15,1.35,1.55,1.8. In Fig. 1 the repulsive-
shoulder potential is shown along with its smooth version
which was used in our Monte Carlo (MC) and molecular
dynamics (MD) simulations.

In the remainder of this paper we use the dimensionless
quantities: F=r/d, P=Pd’/¢, and V=V/Nd*= 1/p. As we
will only use these reduced variables, we omit the tildes.

In Ref. [37], phase diagrams of repulsive-step models
were reported for o,=1.15,1.35,1.55. In the present paper
we also calculate the phase diagram of the system for o
=1.8. To determine the phase diagram at nonzero tempera-
ture, we performed NVT MD simulations combined with
free-energy calculations. For equilibration rescaling of the
velocities was used, for sampling we used NVE ensemble
monitoring the stability of the temperature. In all cases, pe-
riodic boundary conditions were used. The number of par-
ticles varied between 250, 500, and 864. No system-size de-
pendence of the results was observed. The system was
equilibrated for 5X 10° MD time steps. Data were subse-
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quently collected during 3 X 10°6t where the time step ot
=5%107.

In order to map out the phase diagram of the system, we
computed its Helmholtz free energy using thermodynamic
integration: the free energy of the liquid phase was computed
via thermodynamic integration from the dilute gas limit [45],
and the free energy of the solid phase was computed by
thermodynamic integration to an Einstein crystal [45,46]. In
the MC simulations of solid phases, data were collected dur-
ing 5X 10* cycles after equilibration. To improve the statis-
tics (and to check for internal consistency) the free energy of
the solid was computed at many dozens of different state
points and fitted to multinomial function. The fitting function
we used is a, 7V, where T and V=1/p are the temperature
and specific volume and powers p and ¢ are connected
through p+¢g=N. The value N we used for most of the cal-
culations is 5. For the low-density fcc phase N was taken
equal to 4, since we had less data points. The transition
points were determined using a double-tangent construction.

The region where thermodynamic anomalies are expected
is situated close to the region where the system undergoes
structural arrest. As a consequence, proper sampling of the
phase space can be problematic. To overcome this problem
we used parallel tempering [45]. Instead of simulating a
single system, we consider n systems, each running in the
NVT ensemble at a different temperature. Systems at high
temperatures go easily over potential barriers and systems at
low temperatures sample the local free-energy minima. The
idea of parallel tempering is to attempt Monte Carlo tem-
perature swaps between the systems at different tempera-
tures. If the low and high temperatures are far apart, the
probability to accept such a swap move is quite low. For this
reason, we use a range of “intermediate” temperatures. Dur-
ing a parallel tempering simulation, we generate equilibrium
configurations for the system at all the temperatures in the
simulation. In most cases, we used eight temperatures and
tried to swap them 40 times. This simulation took almost 24
h running on eight processors in parallel at the Joint Super-
computing Center of Russian Academy of Sciences.

Figure 2 shows the phase diagrams that we obtain from
the free-energy calculations for four different values of oy. In
fact, the phase diagrams for o,=1.15,1.35,1.55 were already
reported in Ref. [37]. We show these phase diagrams here
too because they provide the “landscape” in which possible
“water” anomalies should be positioned. Figure 2(a) shows
the phase diagram of the system with o,=1.15. One can see
that for the system with o =1.15 there are no maxima in the
melting curve. In a soft-sphere system described by the po-
tential 1/7'* a face-centered-cubic crystal structure has been
reported [47]. However, the addition of a small repulsive step
leads to the appearance of the fcc-bee transition shown in
Fig. 2(a).

Figure 2(b) shows the phase diagram of the system with
o,=1.35 in the p-T plane. There is a clear maximum in the
melting curve at low densities. The phase diagram consists of
two isostructural fcc domains corresponding to close packing
of the small and large spheres separated by a sequence of
structural phase transitions. This phase diagram was dis-
cussed in detail in our previous publication [37]. It is impor-
tant to note that there is a region of the phase diagram where
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FIG. 2. (Color online) Phase diagram of the system of particles
interacting through potential (2) with o,=1.15,1.35,1.55,1.8 in
p-T plane. Figures 2(b)-2(d) show the behavior of the diffusivity as
a function density. In Figs. 2(b) and 2(c) one can see that it is
nonmonotonic. We also indicate the density anomaly corresponding
to the locations of the minima on the isochores (see Fig. 4).
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we have not found any stable crystal phase. In that paper we
argued that no simple crystal structure is stable in this den-
sity range because of frustration. The results of Ref. [37]
suggest that a glass transition occurs in this region with 7,
=0.079 at p=0.53. The apparent glass-transition temperature
is above the melting point of the low-density fcc and FCO
phases [see Fig. 2(b)]. If, indeed, no other crystalline phases
are stable in this region, the “glassy” phase that we observe
would be thermodynamically stable. This is rather unusual
for one-component liquids. In simulations, glassy behavior is
usually observed in metastable mixtures, where crystal
nucleation is kinetically suppressed. One could argue that, in
the glassy region, the present system behaves like a “quasi-
binary” mixture of spheres with diameters d and oy and that
the freezing-point depression is analogous to that expected in
a binary system with a eutectic point: there are some values
of the diameter ratio such that crystalline structures are
strongly unfavorable and the glass phase could then be stable
even at very low temperatures. The glassy behavior in the
reentrant liquid disappears at higher temperatures.

One would expect frustration to be even more pronounced
if we increase the step width. In Fig. 2(c) we show the phase
diagram of the system with potential (2) for o,=1.55. This
system also exhibits low- and high-density fcc phases sepa-
rated by fcc to bec transitions and the amorphous gap which
is much more wider than for o,=1.35. We did not find any
simple crystal structure between these isostructural phases.
The glass transition temperature is 7,=0.11091 at p=0.5.
One can see that the vitrification temperature becomes
higher. Given the lack of crystal structure between crystalline
phases and the increase in the glass transition temperature
one can assume that the frustration effects become more pro-
nounced with increase in the step width.

The phase diagram of the system with o,=1.8 is shown in
Fig. 2(d). In this case a crystalline phase with diamond struc-
ture appears inside the disordered gap. However, this phase
does not extend over the whole disordered region.

We expect that thermodynamic anomalies might occur in
the vicinity of the “frustrated” part of the phase diagrams of
the repulsive-step models. To check this, we calculated the
isochores and the low-temperature diffusivity for different
values of 0. The diffusivity was calculated in a conventional
way [45] using the Einstein relation. It is proportional to the
slope of the mean-squared displacement for long times,
where mean-square displacement grows linearly with time.
The model with o,=1.15 has no amorphous “gap” in the
phase diagram and indeed we observe no anomalies in either
D or p. In contrast, for other values of the potential param-
eters, we sometimes observe nonmonotonic behavior in D in
the vicinity of the maximum of the melting curve [see Figs.
2(b) and 2(c)]. In Fig. 3 the behavior of the diffusivity is
shown in more detail for different values of o,. One can see
that with increasing the width of the repulsive step o, the
anomaly is becoming less pronounced and disappears for
o,=1.8. It is interesting to note that this value of o, corre-
sponds to width of the repulsive step considered in [36,38]
where no anomalies were found for the repulsive-shoulder
potential.

The region where the diffusivity anomaly is observed al-
most coincides with a region where there is a minimum in
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FIG. 3. (Color online) Diffusion anomaly for o=1.35,1.55,1.8.
One can see that the nonmonotonic behavior of diffusion at low
temperatures (diffusion anomaly) decreases with increasing o, and
disappears for o,=1.8.

the curve of P versus T at constant p. Figures 2(b) and 2(c)
show the locations of the pressure minima along the isoch-
ores. Figure 4 shows the corresponding P—T7 curves. Using
the thermodynamic relation (dP/dT)y=ap/ Ky, where ap is a
thermal expansion coefficient and Ky is the isothermal com-
pressibility and taking into account that K is always positive
and finite for systems in equilibrium not at a critical point,
one can conclude that there is a range of densities and tem-
peratures where the thermal expansion coefficient ap is
negative.

To elucidate the behavior of the anomalies with increasing
the width of the repulsive step of the potential, we rescaled
the parts of the phase diagrams corresponding to the first
maximum on the melting curve (see Fig. 2) by multiplying

FIG. 4. (Color online) Density anomaly for o=1.35,1.55,1.8.
The low temperature minima on the isochores corresponding to
negative thermal expansion coefficient become less developed with
increasing o and disappear for o;=1.8.

the density by the of and dividing the temperature by T,,,,,
where T, is the temperature corresponding to the maxi-
mum. In accordance with the qualitative picture depicted
above the rescaled parts of the phase diagrams should coin-
cide. As it can be seen in Fig. 5 this is roughly the case for
o,=1.35,1.55,1.8. However, the curves do not collapse and,
in fact, there is no reason why they should. In Fig. 5 we also
show the locations of the minima of the isochores for o
=1.35,1.55. One can see that with increasing width of the
repulsive step the line of the minima moves to the melting
line and then disappears into the metastable region. Unfortu-
nately, we cannot analyze the behavior of the system in the
metastable region because our simulation includes the paral-
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FIG. 5. (Color online) Rescaled part of the phase diagram cor-
responding to the maximum on the melting curve with locations of
the minima on the isochores.

lel tempering approach which avoids the thermodynamically
unstable states. It should be noticed that this scenario is in
accordance with the observations of Ref. [38].

At low densities, we have effectively a liquid consisting
of spheres with diameter o, at high densities, the liquid con-
sists of spheres with diameter d. In the “anomalous region”
in between, our system appears as a mixture of both sorts of
particles, and one can expect that in this region structural
order should decrease for intermediate values of oy. In this
case, the entropy of the system should increase with increas-
ing density, and, due to the thermodynamic relation (%)P
=p2(§§)T(Z—;)T [48], one gets the anomalous behavior in this
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region. This further demonstrates that our model shows a
quasibinary behavior.

In summary, we have performed extensive computer
simulations of the phase behavior of three-dimensional sys-
tems described by a soft, purely repulsive-shoulder potential
(2). We find a surprisingly complex phase behavior. We ar-
gue that the evolution of the phase diagram may be qualita-
tively understood by considering this one-component system
as a quasibinary mixture of large and small spheres. Interest-
ingly, the phase diagram includes two crystalline fcc do-
mains separated by a sequence of the structural phase tran-
sitions and a reentrant liquid that becomes amorphous at low
temperatures. Waterlike anomalies (density anomaly and dif-
fusion anomaly) were found in the reentrant liquid for o
=1.35,1.55. The anomalies disappear with increasing the re-
pulsive step width: their locations move to the region inside
the crystalline phase in the vicinity of the maximum on the
melting line.
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